Photo credit: Vanessa Bauman
“The preparation of this document was financed in part through a planning grant from the Federal Aviation Administration (FAA) as provided under Section 505 of the Airport and Airways Improvement Act of 1982, as amended by the Airway Safety and Capacity Expansion Act of 1987. The contents do not necessarily reflect the official views or policy of the FAA. Acceptance of this report by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted therein, nor does it indicate that the proposed development is environmentally acceptable in accordance with applicable public laws.”
PREFACE

The Ted Stevens Anchorage International Airport (Airport) Master Plan Update (Master Plan Update) provides Airport management and the Alaska Department of Transportation & Public Facilities (DOT&PF) with a strategy to develop the Ted Stevens Anchorage International Airport. The intent of the Master Plan Update is to provide guidance that will enable Airport management to strategically position the Airport for the future by maximizing operational efficiency and business effectiveness, as well as by maximizing property availability for aeronautical development through efficient planning. While long-term development is considered in master planning efforts, the typical planning horizon for the Master Plan Update is 20 years.

The Federal Aviation Administration provides guidance for Master Plan development in FAA Advisory Circular 150/5070-6B, Airport Master Plans. Although not required, the Advisory Circular strongly recommends airports prepare a Master Plan. Funding for the Master Plan Update is provided primarily by the Federal Aviation Administration through an Airport Improvement Program grant.

A comprehensive Master Plan Update was last prepared in 2002 and a partial update was undertaken between 2006 and 2008. This Master Plan Update was initiated in June 2012 and concluded in December 2014. The DOT&PF entered into a contract with the firm RS&H to lead this effort. The Master Plan Update included a robust public and stakeholder involvement program.
INTRODUCTION
An Airport Layout Plan (ALP) narrative is a condensed report explaining the reasoning behind the important features of the ALP. An ALP narrative is submitted as part of the ALP package to the Federal Aviation Administration (FAA) for review and approval. The narrative report includes a brief airport description, forecast summary, and discussion of major changes since the most recent ALP, which for Ted Stevens Anchorage International Airport (Airport), was conditionally approved by the FAA on May 13, 2013. In addition to a change in the cartographic standard of the ALP and updated data, major changes include the addition of a list of non-standard conditions, list of potential future airport projects recommended in the Ted Stevens Anchorage International Airport Master Plan Update (Master Plan Update) process, and revised land use classifications and their definitions.

AIRPORT DESCRIPTION
The Airport covers 4,210 acres, not including the Lake Hood Airport and has three asphalt paved runways (including Runway Design Codes [RDC] / Runway Reference Code [RRC]).

- Runway 7L-25R (1,600 feet x 150 feet)
- Runway 7L
- Runway 25R
- Runway 7L-25L (1,400 feet x 200 feet)
- Runway 7L
- Runway 25L
- Runway 15-33 (1,090 feet x 150 feet)
- Runway 15
- Runway 33

The Airport is classified as a medium hub, commercial service airport within the National Plan of Integrated Airport Systems (NPIAS). The Airport is one of the busiest airports nationally and internationally for cargo landed weight. The Airport also plays an important role in the intrastate transport of goods and people as 82% of Alaska communities are inaccessible by road.1

AVIATION ACTIVITY FORECAST SUMMARY
A forecast of aviation activity was completed for the Airport, Fairbanks International Airport, and Lake Hood Airport as part of the 2013 Alaska International Airport System (AIAS) Planning Study (AIAS Planning Study) with a baseline year of 2010 and projections made through 2030. The forecast of aviation activity is documented in detail in the May 2013 AIAS Forecast Technical Report (AIAS Forecast). The AIAS Forecast was submitted to the FAA for review on June 5, 2012. It was accepted by the FAA on September 13, 2012. The text that follows provides a summary of the passenger, cargo, general aviation, and aircraft operations forecast for the Airport.

Passenger
Total annual passenger enplanements grew from approximately 2.2 to 2.5 million from 2000 to 2011 (approximately 1.2% annual growth). For passenger enplanements, the peak month has historically occurred and still continues to occur in the summer months of June through August. Approximately 64% of total passenger enplanements are from domestic traffic between Anchorage and the Lower 48 States. The remaining share of total enplaned passengers is from international and intra-Alaska traffic. The share of transit passengers (passengers that remain on the aircraft or deplane / enplane the same aircraft as it stops at the Airport) has generally decreased since 2000 due to the introduction of new-generation, long range aircraft which enables airlines to fly non-stop between Asia and the Lower 48 States. Future passenger enplanements are forecast to grow from 2.4 to 3.1 million enplanements between 2010 and 2030 with an average annual growth rate of 1.3%.

Cargo
The Airport is ranked second in the nation for cargo landed weight behind Memphis International Airport according to Airports Council International (ACI). The Airport is ranked sixth in the world for total cargo weight behind airports in Hong Kong, Memphis, Shanghai, Incheon (Seoul), and Dubai. For this ALP Narrative Report, cargo tonnage is described for intrastate cargo and international / domestic cargo.

Intrastate or intra-Alaska cargo is cargo that is transported between the Airport and other Alaskan airports. The majority of intrastate cargo is shipped as part of the U.S. Postal Service Bypass Mail Program by charted cargo carriers or passenger airlines as belly cargo. As stated in the AIAS Forecast, historically, intrastate cargo tonnage decreased slightly (127,000 to 110,000 short tons between 2000 and 2010 [approximately -0.4% annual growth]). However, intrastate cargo tonnage is forecast to return to 128,000 short tons by 2030 with an average annual growth rate of 0.8%.

International and domestic (United States or interstate) cargo pertains to cargo that is transported between the Airport and other countries or the Lower 48 States, respectively. It includes cargo handled by various cargo carriers, including integrated cargo carriers such as FedEx and United Parcel Service (UPS) and other all-cargo carriers such as Atlas, Polar, or Korean Air Cargo, and cargo carried in the belly of aircraft, such as on some passenger airlines. As stated in the AIAS Forecast, approximately 42% of all international and United States interstate cargo was transported in 2010 as transit operations. Transit cargo is seldom taken off aircraft while at the Airport. Historically, international and domestic cargo has increased from 3.5 million to 4.7 million short tons between 2000 and 2030 (approximately 3.3% average annual growth). International and domestic cargo is forecast to continue to grow to 8.7 million short tons by 2030 with an average annual growth rate of 3.0%. The peak month of cargo activity occurs in October in the lead up to the North American holiday shopping season.

General Aviation
While there is no official definition of general aviation by the FAA, it is comprised of all aviation activity outside of those air carriers that operate under Part 121, Part 129, or Part 135 of Chapter 14 of the Code of Federal Regulations. General aviation primarily includes privately owned and operated aircraft and does not include users that hold air carrier certificates or permits. General aviation activity at the Airport includes aircraft parking, hangars, fixed base operators (FBOs), fuel services, and flight schools in the South Airpark and East Airpark.

Nationally, personal and recreational general aviation activity has declined for various reasons including socioeconomic, aircraft utilization, increasing maintenance costs, and pilot trends. Alternatively, corporate and business-related general aviation has increased nationally. The Airport has experienced a similar trend, namely a decline in operations from 2000 - 2008 with a partial recovery since 2008.

Aircraft Operations
Aircraft operations have historically declined from 250,000 to 212,000 operations between 2000 and 2011 due to a loss of international passenger flights, general aviation, air taxi, and military operations, as well as an increase in average aircraft gauge and load factor of passenger and cargo flights. Annual aircraft operations are forecast to grow from 215,560 to 281,942 operations between 2010 and 2030 with an average annual growth rate of 1.4%.

1 Alaska Department of Transportation and Public Facilities, Alaska International Airport System 101 Presentation, 2012.
It is forecast that operations would return to 2000 levels (record high to date) around 2022. General aviation operations are forecast to grow at 1.4% annually. Military operations are forecast to remain constant at the 2011 level of activity, after adjustment to net out the impact of the relocation of the Kulis Air National Guard. The aircraft operations forecast summary is shown in Table 1.

CHANGES FROM THE PREVIOUS ALP

Recent revisions to Advisory Circular (AC) 150 /5300-13A, Airport Design (AC 150 / 5300-13A; effective September 28, 2012) as well as the new ALP Checklist as documented in Standard Operating Procedure (SOP) 200, Standard Procedure for FAA Review and Approval of Airport Layout Plans (ALPs; effective October 1, 2013) resulted in several major changes since May 2013 when the last ALP was conditionally approved by FAA Alaskan Region. The previous ALP was updated primarily to show as-built conditions at the Airport. Since May 2013, the ALP was updated as part of the current Master Plan Update to 1) remove an existing Modification to Standard, 2) address non-standard conditions identified as a result of a design standards assessment, 3) show potential future development to address future capacity needs, and 4) evaluate land use requirements and land use classifications.

MODIFICATION TO STANDARDS

The existing Runway 15-33 centerline to Taxiway Y centerline separation is 508 feet. Currently, a Modification to Standard (MOS) exists for this condition. The parallel taxiway separation minimum requirement for reverse turn high speed exits has been reduced to 484 feet per Change 1 of AC 150 / 5300-13A (February 26, 2014). As such, the required lateral separation between Runway 15-33 and Taxiway Y is 500 feet based on runway design standards; therefore, the MOS for Runway 15-33 and Taxiway Y is obsolete and is no longer required.

NON-STANDARD CONDITIONS

An assessment of current conditions against design standards resulted in the identification of several non-standard conditions. These non-standard conditions are listed in Table 2, which also appear on the ALP drawing. The Alaska Department of Transportation and Public Facilities (DOT&PF) and FAA will need to work together to resolve these non-standard conditions. Some of these non-standard conditions may be resolved through implementation of the recommended Master Plan Update projects.

BEST PRACTICES AND OTHER AIRFIELD LAYOUT CONSIDERATIONS

The FAA previously allowed Taxiway Object Free Areas (OFAs) to be calculated based on the wingspan of specific aircraft but this practice does not appear to be permitted per AC 150 / 5300-13A. OFA dimensional requirements are specified in AC 150 / 5300-13A for the most demanding aircraft in each Airplane Design Group (ADG).

The following Airport taxiways / taxilanes use an OFA calculated specifically for the Boeing 747-8. These taxiways / taxilanes are currently in compliance; however, it is important to note that these taxiway / taxilane
New standards contained in AC 150/5300-13A prohibit acute angle taxiways directly linking two runways. The FAA no longer permits acute angle taxiways directly connecting two runways for two reasons:

1. Acute angle taxiways are designed to enable arriving aircraft to exit the runway at a higher rate of speed. Aircraft taxing at a high rate of speed are less likely to be able to stop prior to crossing a hold-bar and entering the adjacent runway where another aircraft may be landing or taking off and traveling at a high rate of speed.

2. Pilots in an aircraft on an acute angle taxiway will have limited visibility of the runway they are crossing due to the angle of the airplane relative to the runway being crossed. Limited visibility may reduce pilot situational awareness making it difficult to see traffic on the runway the pilot is preparing to cross.

FAA standards contained in AC 150/5300-13A now require perpendicular runway-taxiway intersections intended to increase pilot situational awareness near the runway-taxiway intersection unless the acute angle taxiways lead to a parallel taxiway. Reconfiguration of these acute angled taxiways may remove Hot Spot 1 and Hot Spot 2. Removal of Taxi lane G (north of Taxiway K) may also remove Hot Spot 1.

RECOMMENDED PROJECTS

Several projects were recommended as part of the Master Plan Update to address non-standard conditions, best practices, and facility requirements to accommodate forecast demand. The capital improvement and land acquisition projects are summarized, by potential implementation year, in Table 3. They are also shown on the ALP. The timing of specific development projects for the Airport will be determined by actual, rather than forecast demand. Additional environmental documentation efforts and FAA coordination will need to be completed prior to the implementation of these projects.

Table 3

<table>
<thead>
<tr>
<th>Potential Acquisition / Construction Implementation Year</th>
<th>Project Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Aircraft Rescue and Fire Fighting (ARFF) Training Facility</td>
<td>The project includes final site selection, potential NEPA documentation, design, and construction of an ARFF training facility with one burn pit located west of the South Airpark to replace the existing ARFF hydrocarbon fuel burn pit, meet applicable environmental regulations, and ensure conformance with applicable FAA AC’s and FAR Part 139.</td>
</tr>
<tr>
<td>2016</td>
<td>Hotel Site Development</td>
<td>The project includes development of a hotel near the North Terminal passenger processor. This project would be initiated by a private developer/tenant through an Airport issued Request for Proposal.</td>
</tr>
<tr>
<td>2018</td>
<td>Ground Run-up Enclosure (GRE)</td>
<td>The project includes site selection, potential NEPA documentation, design, and construction of a GRE to mitigate noise generated during routine aircraft maintenance, decreasing noise impacts to the surrounding community.</td>
</tr>
<tr>
<td>2018</td>
<td>‘Papa’ Remain Overnight (RON) Apron Expansion and Postmark Bog Development</td>
<td>The project includes potential NEPA documentation, design, and construction for expanding the ‘Papa’ RON apron by adding five additional A380-capable parking positions, extending Taxi lane P, and constructing a new taxi lane south of Taxi lane P. The project also includes expanding the Postmark Bog area. NEPA documentation, design and construction for the Postmark Bog development would be undertaken by the developer/tenant. The cost for expanding and developing the Postmark Bog area is anticipated to be borne by the developer/tenant.</td>
</tr>
<tr>
<td>2018 - 2020</td>
<td>Runway 15-33 Widening and Decoupling, Taxiway R Extension, Taxiway Q Realignment, Taxiway Q1 Construction</td>
<td>The project includes potential NEPA documentation, design, and construction for the 1) widening of Runway 15-33, 2) decoupling of Runway 33 to eliminate the intersection with Runway 7L-25R and overlapping RSAs, 3) extension of Taxiway R to the Runway 15 end, 4) realignment of Taxiway Q, and 5) construction of Taxiway Q3.</td>
</tr>
</tbody>
</table>

Note: The potential implementation year presented for each project was determined based on forecast demand. The year each project will be implemented will be based on actual demand.

Hot Spot 1 is located at the Taxi lane G intersection with Taxi lane E and Taxiway K. This is a complex intersection where pilots could potentially make an incorrect turn resulting from reduced situational awareness. Aircraft taxiing to Runway 33 via Taxi lane E, Taxiway G, and Taxiway K could miss the turn from Taxiway G onto Taxiway K and continue on Taxiway G toward Runway 7L-25R. The potential risk of runway incursion at this location would be higher during conditions of reduced visibility.

Hot Spot 2 is located along Taxiway E between Runway 7L-25R and Runway 7R-25L. It involves pilots confusing hold short instructions for Runway 7L-25R and Runway 7R-25L when taxing to Taxiway K via Taxiway E and Taxiway F. Taxiway D signage may not be visible from Taxiway E and Taxiway F hold positions.

OFAs may need to be addressed to meet full ADG-VI standards when these taxiways are in need of reconstruction.

- Taxi lane E – north of Taxiway M
- Taxiway G1 – north of Taxiway I

TED STEVENS ANCHORAGE INTERNATIONAL AIRPORT

Master Plan Update

December 2014

Appendix K - Airport Layout Plan
Table 3
Recommend Master Plan Update Capital Improvement and Land Acquisition Projects (contd.)

<table>
<thead>
<tr>
<th>Potential Acquisition / Construction Implementation Year</th>
<th>Project Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>East / West Parallel Taxiway and South Airpark Development</td>
<td>The potential implementation year presented for each project was determined based on forecast demand. The year each project will be implemented will be based on actual demand.</td>
</tr>
<tr>
<td></td>
<td>The project includes potential NEPA documentation, design, and construction for an extension of the East / West Parallel Taxiway (ADG-VI) to the east and west and for South Airpark development. NEPA documentation, design and construction would be undertaken by the developer / tenant. The cost for developing the existing South Airpark area (Kulis Business Park and in vacant areas along the north / south portion of Taxiway Z) is anticipated to be borne by the developer / tenant.</td>
<td></td>
</tr>
<tr>
<td>2019 - 2022</td>
<td>South Terminal Expansion Project (STEP)</td>
<td>The potential implementation year presented for each project was determined based on forecast demand. The year each project will be implemented will be based on actual demand.</td>
</tr>
<tr>
<td></td>
<td>STEP includes construction of a new South Terminal concourse with five new gates at the South Terminal to accommodate domestic and international operations and demolition of the North Terminal concourse. The advanced planning effort (an in-depth requirements and phasing analysis) will assess the impacts to domestic and international passenger flows, space allocations and impacts to airlines, impacts of construction activity on airport operations, impacts on apron areas and finalize phasing prior to design. Coordination between construction activity and airport operations would also be considered during advanced planning. NEPA documentation may also be required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The construction of STEP is anticipated to be completed in three phases.</td>
<td>Phase 1 includes 1) relocating R2, R3, and R4 aircraft parking positions, 2) securing any necessary permits / clearances, 3) relocating passenger operations impacted by STEP temporarily to the North Terminal, and 4) constructing a new South Terminal concourse. Phase 2 includes 1) relocating passenger operations to new South Terminal concourse, 2) demolishing the North Terminal concourse, and 3) upgrading the North Terminal processor. Phase 3 includes redeveloping the North Terminal apron for aircraft parking.</td>
</tr>
<tr>
<td>2020</td>
<td>Land Acquisition</td>
<td>The land to the west of the Airport may be acquired through purchase from or trade with the Municipality of Anchorage or other owners.</td>
</tr>
<tr>
<td></td>
<td>The project would provide opportunity for land acquisition for the future development of the West Airpark via a land trade with the MOA or purchase from the MOA or other owners.</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Fuel Farm Expansion</td>
<td>The project includes design and construction of a tenant initiated fuel farm expansion. Design and construction would be undertaken by the developer / tenant. The cost for expanding the fuel farm is anticipated to be borne by the developer / tenant.</td>
</tr>
<tr>
<td>2020</td>
<td>Fairbanks International Airport Improvements</td>
<td>The project includes planning, potential NEPA documentation, design, and construction for necessary improvements at Fairbanks International Airport. This project would be sponsored and funded by Fairbanks International Airport.</td>
</tr>
<tr>
<td>2020 - 2034</td>
<td>Crossfield Taxiways Realignment</td>
<td>The project includes potential NEPA documentation, design and construction to realign the crossfield taxiways perpendicular to the east-west runways in accordance with FAA standards (AC 150/5300-13A, Airport Design) and FAA coordination.</td>
</tr>
<tr>
<td>2021</td>
<td>New South Airpark Access Roadway</td>
<td>The project includes potential NEPA documentation, design and construction of a roadway on the west side of the South Airpark to enable corporate and general aviation development at the west end of the existing South Airpark (near the north / south portion of Taxiway Z).</td>
</tr>
</tbody>
</table>

Note: The potential implementation year presented for each project was determined based on forecast demand. The year each project will be implemented will be based on actual demand.
<table>
<thead>
<tr>
<th>Potential Acquisition / Construction Implementation Year</th>
<th>Project Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024</td>
<td>North Airpark Roadway Realignment, Taxiway T Extension, and Eastward Expansion of the North Airpark</td>
<td>This project includes potential NEPA documentation, design, and construction to include 1) construction of the North Airpark Roadway, 2) extension of Taxiway T, and 3) redevelopment / eastward expansion of the North Airpark for future development by tenants of the North Airpark. NEPA documentation and construction of the redevelopment / eastward expansion of the North Airpark would be undertaken by the developer / tenant. The cost for expanding and developing the North Airpark is anticipated to be borne by the developer / tenant.</td>
</tr>
<tr>
<td>2025</td>
<td>North Airpark Northward Expansion</td>
<td>The project includes cargo development to the north of the existing North Airpark boundary and toward Point Woronzof Drive by tenants of the North Airpark. The project would be undertaken by the developer / tenant. The cost for expanding and developing the North Airpark is anticipated to be borne by the developer / tenant.</td>
</tr>
<tr>
<td>2027</td>
<td>Potential West Airpark Development</td>
<td>The project includes advanced planning, potential NEPA documentation, design, and construction for six A380-capable aircraft parking positions and associated taxiways in the West Airpark for the potential future development of the West Airpark. Advanced planning, NEPA documentation and construction of the West Airpark development would be undertaken by the developer / tenant. The cost for expanding and developing the West Airpark, excluding cargo parking positions, is anticipated to be borne by the developer / tenant.</td>
</tr>
<tr>
<td>2027</td>
<td>Tunnel to West Airpark</td>
<td>The project includes design and construction of a tunnel connecting the east and west sides of the Airport. A 4-lane tunnel, providing public and secure access would be constructed from Postmark Drive and run west under Taxiway R, Runway 15-33, and Taxiway Y to the West Airpark. The public access tunnel (2 lanes) would continue under the potential north / south runway and associated taxiways. The secure access tunnel (2 lanes) would surface in the West Airpark between the existing and potential north / south runways. Potential NEPA documentation could be completed as part of the Potential North / South Runway project or Potential West Airpark Development project.</td>
</tr>
<tr>
<td>2027</td>
<td>Public Parking Facilities Reconfiguration</td>
<td>This project includes potential NEPA documentation, design, and construction to reconfigure and expand public parking facilities.</td>
</tr>
<tr>
<td>2028</td>
<td>Potential North / South Runway</td>
<td>The project includes advanced planning, potential NEPA documentation, design, and construction for a potential north / south runway and associated airfield improvements (e.g., taxiways, service roads, earthwork), and realignment of a contiguous Coastal Trail.</td>
</tr>
<tr>
<td>TBD</td>
<td>Deicing Chemical Collection Improvement</td>
<td>The project includes potential NEPA documentation, design, and construction of an enhanced deicing chemical collection system based on regulatory changes.</td>
</tr>
</tbody>
</table>

Note: The potential implementation year presented for each project was determined based on demand. The year each project will be implemented will be based on actual demand. Future tenant development costs are not presented as these costs are anticipated to be borne by the developer / tenant. These include project costs for environmental documentation, design, and construction activities.

December 2014
LAND USE CLASSIFICATIONS

Revised land use classifications for the Airport were prepared to enhance the management of Airport land assets, maximize property availability for aviation development through efficient and compatible planning, and allow appropriate strategic decision-making to accommodate future demand. It is important for the Airport's land use classifications to comply with FAA’s definitions of Aeronautical and Nonaeronautical since FAA Grant Assurances predicate the appropriate use and enforcement of land uses. Ultimately, the goal is to ensure adequate land is available to support air transportation requirements for the 20-year planning horizon and beyond. On-airport land areas are therefore allocated for a specific use to promote safe and efficient aviation activities. Compatibility with off-Airport land uses and noise impacts to the community are also considered.

Land use classifications represent the highest and best use to promote a safe and efficient Airport. As such, the land use classifications define the primary, or preferred, land use for Airport property. However, in some cases secondary, or non-preferred, land uses may be allowed for an interim duration. Additionally, tenant or subtenant operations may encompass multiple land use classifications which differ from that of the primary land use classification. An application for use of Airport land that differs from the primary land use classification requires the approval of Airport management, in consultation with the FAA.

Airport land use classifications are intended to provide adequate specificity to be applied to future tenants and land use. The land use classifications are presented below with the above-mentioned considerations in mind. Off-Airport lands that are deemed areas of high value that are not currently under the direct control of the Airport are also depicted as ‘Land Acquisition’ on the graphic. Land use classifications for the Lake Hood Airport will be addressed during the Master Plan Update for Lake Hood Airport and were not addressed during this Master Plan Update process.

International Cargo

The International Cargo land use classification includes Airport lands related to the accommodation of facilities for the handling and processing of international air cargo and air mail including apron areas for the loading, unloading, maintaining, and servicing of international cargo aircraft with direct airfield access. Example facilities and activities include, but are not limited to, international cargo processing, transitional warehousing, hangar facilities, apron space, and remain overnight cargo aircraft parking positions for air carriers operating through Anchorage between the Lower 48 States and international destinations.

Tenants and facilities in this classification are differentiated from Domestic Cargo in that the aircraft and cargo operations associated with this classification typically originate and terminate within Alaska and the Lower 48 States. Also, Domestic Cargo operations typically utilize smaller aircraft (e.g., turboprops and narrow-body jets) and occupy smaller cargo processing and transitional warehouse facilities.

Uses in this classification are deemed compliant with the FAA's definition of Aeronautical use.

Aircraft Aeronautical

The Aircraft Aeronautical land use classification includes Aeronautical activities, other than International Cargo and Domestic Cargo, which require direct aircraft access to the airfield. This land use classification includes Airport lands related to the accommodation of facilities for maintenance and storage of aircraft, aircraft parking, and flight operations.

Example facilities and activities include, but are not limited to, full service FBOs, aircraft fuel services, condo-style aircraft hangars, air ambulance operations, and small commercial or private aircraft operations.

Uses in this classification are deemed compliant with the FAA's definition of Aeronautical use.

Domestic Cargo

The Domestic Cargo land use classification includes Airport lands related to the accommodation of facilities for the handling and processing of domestic air cargo and air mail including apron areas for the loading, unloading, maintaining, and servicing of domestic cargo aircraft with direct airfield access. Domestic Cargo encompasses activities classified as Regional Cargo and Other Domestic Cargo.

Example facilities and activities include, but are not limited to, domestic cargo processing, transitional warehousing, hangar facilities, and apron space for air carriers operating within Alaska or between Anchorage and the Lower 48 States.

Tenants and facilities in this classification are differentiated from International Cargo in that the aircraft and cargo operations associated with this classification typically originate and terminate within Alaska and the Lower 48 States. Also, Domestic Cargo operations typically utilize smaller aircraft (e.g., turboprops and narrow-body jets) and occupy smaller cargo processing and transitional warehouse facilities.

Uses in this classification are deemed compliant with the FAA's definition of Aeronautical use.
International Cargo / Domestic Cargo / Other Aeronautical

This classification allows International Cargo, Domestic Cargo, and Other Aeronautical development as previously defined.

Airfield

The Airfield land use classification includes the area used for the runway and taxiway system and other pavement areas within the area where aircraft may taxi, takeoff, or land as well as apron areas where aircraft may park. It also includes land areas where airfield lighting and navigational aids (NAVAIDs) may be located.

Nonaeronautical

The Nonaeronautical land use classification includes all uses of the Airport that are not used for Aeronautical purposes as previously defined. The land uses in this classification are nonaeronautical commercial uses that are not required to be located on an airport for the business to operate. The maximum lease term for Nonaeronautical development is 35 years.

Areas designated as Nonaeronautical do not exclude Aeronautical use activities; Aeronautical users may lease within any area designated as Nonaeronautical. An Aeronautical user takes priority over a Nonaeronautical user in consideration of a lease.

Example facilities and activities include but are not limited to: freight forwarding (any forwarder that does not receive or send 100% of its freight via aircraft); car rental facilities; rental of vehicles that will not fit in the rental car facility; in-flight catering kitchens; restaurants; retail establishments; vehicle storage; manufacturing/testing/assembly; warehousing; U.S. Post Office; and administrative and corporate offices. Utility facilities are also Nonaeronautical.

Other Aeronautical / Nonaeronautical

This classification allows Other Aeronautical and Nonaeronautical development as previously defined. Applications for Aeronautical Support developments are prioritized over Nonaeronautical.

Passenger Terminal and Landside

The Passenger Terminal and Landside land use classification includes the area that is necessary for the main passenger terminal and related activities that is located within the passenger terminal envelope generally comprising the passenger terminal building and the airport loop road. It also includes associated passenger terminal landside facilities including public and employee parking, access and circulation roadways, passenger terminal curbside, ground transportation and commercial vehicle, rental car, and other transit/rail facilities. Portions of the passenger terminal and landside area may be considered Aeronautical or Nonaeronautical based on tenant use.

Passenger carriers include air carriers that transport passengers on a commercial basis. These passenger carriers 1) hold an Air Carrier Certificate or Operating Certificate issued by the FAA, or 2) hold the appropriate permits for foreign air carrier operation issued by the U.S. Department of Transportation. These passenger air carriers also may operate on a scheduled, chartered, or on-demand basis. See Part 121, Part 129, and Part 135 of Chapter 14 of the Code of Federal Regulations for more information.

Future Airport Development

The Future Airport Development land use classification includes Airport land areas that are vacant or have not yet been categorized as another land use but are reserved for potential airport development.

Land Acquisition

The Land Acquisition land use includes areas not currently owned by the Airport which may need to be acquired to support the safe and efficient operation of the Airport. Land acquired by the Airport would be classified as a specific use at the time of acquisition.

Department of Military and Veterans Affairs Land Management Agreement

Areas operated by the State of Alaska, Department of Military and Veterans Affairs under an Interagency Land Management Agreement.
Airport Layout Plan

TED STEVENS ANCHORAGE INTERNATIONAL AIRPORT (ANC)
Anchorage, Alaska

December 2014
Approved Modifications to Airport Design Standards

<table>
<thead>
<tr>
<th>Component</th>
<th>Standard</th>
<th>Classification</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. All Runways have HMA surfaces unless otherwise indicated on sheet 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. All Latitude and Longitude coordinates are in North American Datum of 1983 (NAD 83).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Represents an existing non-standard condition. See Existing Non-Standard Conditions table.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Currently resolved through modifications to airport design standards. See Approved Modifications to Airport Design Standards table.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 1,000' standard Runway Safety Area (RSA) is accommodated with the application of declared distances. See Declared Distances Data Table for values.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 1,000' standard Runway Safety Area (RSA) is accommodated with the application of declared distances. See Declared Distances Data Table for values.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing Non-Standard Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Existing/Future Runway Data Table

<table>
<thead>
<tr>
<th>Runway Design Code (RDC)</th>
<th>Category</th>
<th>Description</th>
<th>Length</th>
<th>Width</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-VI</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - VIS</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
<tr>
<td>D-VI - STD</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
<td>EXISTING</td>
</tr>
</tbody>
</table>
| D-VI - STD | EXISTING | EXISTING | Exis...
Notes:
- Refer to Approach Plan and Profile sheets for Obstruction information.

Acronyms
- TORA - Take-Off Run Available
- TODA - Take-Off Distance Available
- ASDA - Accelerate Stop Distance Available
- LDA - Landing Distance Available
- RSA - Runway Safety Area

FUTURE DECLARED DISTANCES

<table>
<thead>
<tr>
<th>WEDGE</th>
<th>TORA</th>
<th>TODA</th>
<th>LDA</th>
<th>ASDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWY 7R</td>
<td>10,900'</td>
<td>10,900'</td>
<td>12,400'</td>
<td>10,900'</td>
</tr>
<tr>
<td>RWY 25L</td>
<td>12,400'</td>
<td>12,400'</td>
<td>12,000'</td>
<td>12,000'</td>
</tr>
</tbody>
</table>

Runway 7R Declared Distances
- 600' RSA Prior to Landing Threshold
- Runway 7R LDA 12,400'
- Runway 7R ASDA 10,900'
- Runway 7R TORA / TODA 10,900'

Runway 25L Declared Distances
- 1,000' RSA Prior to Landing Threshold
- Runway 25L LDA 12,000'
- Runway 25L ASDA 12,000'
- Runway 25L TORA / TODA 12,400'

Acronyms
- TORA - Take-Off Run Available
- TODA - Take-Off Distance Available
- ASDA - Accelerate Stop Distance Available
- LDA - Landing Distance Available
- RSA - Runway Safety Area

Notes
- Magnetic Declination = $67°$ W
- Annual Rate Of Change = 18.5' W

Diagram
- Runway 7R Profile
- Runway 25L Profile
- Runway 7R Declared Distances
- Runway 25L Declared Distances

Appendix
- R E V I S I O N S
- SOURCE: NOAA Geophysical Data Center
- 2014-AAL-148-NRA

Footnotes
- The contents of this plan do not necessarily reflect the official views or policy of the Federal Aviation Administration (FAA).
- Acceptance of this document by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted herein nor does it indicate that the proposed development is environmentally acceptable in accordance with appropriate public laws.

Rev. 13 of 34
The contents of this plan do not necessarily reflect the official...
Runway 15 Approach

Plan and Profile - Existing

Runway 15 Profile View

Runway 15 Plan View

Runway 15 Approaches Table

| OBJECT DESCRIPTION | OBJECT NO. | 34:1 THRESHOLD SITTING SURFACE | 159:00 ROAVER | 181:00 DEP | 182:00 DEP | 179:00 DEP | 179:00 DEP | 180:00 DEP | 181:00 DEP | 182:00 DEP | 183:00 DEP | 184:00 DEP | 185:00 DEP | 186:00 DEP | 187:00 DEP | 188:00 DEP |
|--------------------|------------|-------------------------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|

Notes:

1. Obstructions shown through measurements; not scaled to the exact size and shape, unless noted otherwise.
2. Measurements are: 34:1 TSS, 159:00 ROAVER, 181:00 DEP, 182:00 DEP, 179:00 DEP, 179:00 DEP, 180:00 DEP, 181:00 DEP, 182:00 DEP, 183:00 DEP, 184:00 DEP, 185:00 DEP, 186:00 DEP, 187:00 DEP, 188:00 DEP.
3. The measurements are not scaled to the exact size and shape, unless noted otherwise.
4. Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for analysis.
5. Measurements provided by the FAA and reviewed by RS&H.
6. Measurements provided by the FAA and reviewed by RS&H.
7. Measurements provided by the FAA and reviewed by RS&H.
8. FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.
15. FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.
The contents of this plan do not necessarily reflect the official views or policy of the Federal Aviation Administration (FAA).
The contents of this plan do not necessarily reflect the official views or policy of the Federal Aviation Administration (FAA).

Acceptance of this document by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted herein nor does it indicate that the proposed development is environmentally acceptable in accordance with appropriate public laws.

The disposition listed here is subject to change pending FAA Airspace review of the ALP.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

All vehicles operating in the Airport Operations Area (AOA), under direction of the Air Traffic Control (ATC) ground controller shall be outfitted with flashing lights or flags as outlined in the most current version of FAA AC 150/5210-5D, Section 1 (1)

Objects may not be subject to Federal Aviation Regulations (FAR's) and therefore may not be in conformance with FAR's.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.

Road elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).

The FAA Digital Obstacle File (DOF), accurate as of November 12, 2013.

An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.

The 34:1 Threshold Siting Surface (TSS) is determined using Table 7 of FAA Advisory Circular 150/5210-5D.

The 40:1 Terrestrial Procedural (TERPS) Departure Surface (P77) is determined using Table 1 of FAA Advisory Circular 150/5210-5D.

Objects that only penetrate the 62.5:1 One-Engine Inoperative (OEI) Obstacle Identification Surface (OIS) are provided for information only.
The contents of this plan do not necessarily reflect the official FUTURE AIRPORT PROPERTY LINE. Acceptance of this document by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted herein nor does it indicate that the proposed development is environmentally acceptable in accordance with appropriate public laws.

Table: Runway 33L Obstruction Table

<table>
<thead>
<tr>
<th>OBJECT NO.</th>
<th>OBJECT TOP ELEVATION</th>
<th>PENETRATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.5:1</td>
<td>40:1</td>
<td>3</td>
<td>Tree (4)</td>
</tr>
<tr>
<td>40:1</td>
<td>40:1</td>
<td>2</td>
<td>Tree (4)</td>
</tr>
<tr>
<td>4:1</td>
<td>4:1</td>
<td>4</td>
<td>Tree (4)</td>
</tr>
</tbody>
</table>

NOTES:
- ROAD elevations include traverseway adjustment (23' Railroads | 17' Highways | 15' Public Roads | 10' Private Roads).
- An Aeronautical survey was conducted by R&M Consultants and accurate as of September 25, 2011.
- Data Center NOAA Geophysical Annual Rate of Change May 8, 2013.
- Magnetic Declination = 676’.
- Roadways and auto parking.
- Radiant Heating System (RHS) for P77.
- PROPOSED DISPOSITION.

GENERAL NOTES:
- All marking and painting is to comply with FAA Part 77.
- Where applicable, road markings must be painted on the shoulder of the road.
- Aeronautical surveys are conducted by independent companies and are subject to change pending FAA Space Review.
- Includes all existing roadways, access points, and pedestrian paths.
- Data is accurate as of the date of the survey.
- Any changes to roadways, access points, and pedestrian paths require updated data from the roadway department.
-不代表任何官方立场或政策。

Plan and Profile

Runway 33L (FUTURE) Plan View

- Runway 33L (FUTURE) Profile View

Data Center

- FAA, AIRPORTS DIVISION ALASKAN REGION, 2014-AAL-148-NRA

Scale

- 1" = 200' Graphic Scale in Feet

Legend

- Legend for Runway 33L (FUTURE) Approach Plan and Profile

Revision

- unseen
Page intentionally left blank
The contents of this plan do not necessarily reflect the official views or policy of the Federal Aviation Administration (FAA). Acceptance of this document by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted herein nor does it indicate that the proposed development is environmentally acceptable in accordance with appropriate public laws.

NOTES:

RUNWAY 15L-33R
PROFILE VIEW

CROSS SECTION
A-A (105+45)

CROSS SECTION
B-B (152+60)

CROSS SECTION
C-C (205+20)

RA / NRC
EHP
1" = 400'

LOWEST APPROACH MINIMUMS

APPROACH
CATEGORY
DECISION
HEIGHT (FT)
VISIBILITY
MINIMUMS (FT)
CAT II
Visual
108
N/A
401

CAT IIIb
Visual
115
N/A
N/A

Visual
401
N/A
N/A

Source: NOAA Geophysical Data Center
The contents of this plan do not necessarily reflect the official views or policy of the Federal Aviation Administration (FAA). Acceptance of this document by the FAA does not in any way constitute a commitment on the part of the United States to participate in any development depicted herein nor does it indicate that the proposed development is environmentally acceptable in accordance with appropriate public laws.

The scale of this plan is 1" = 400'.

Dimensions
- **Runway 15R-33L**
- **Runway 15R-33L Profile View**
- **Runway 15R-33L Plan View**

Cross Sections
- **A-A (100+00)**
- **B-B (140+00)**
- **C-C (180+00)**

Legend
- **OBSTRUCTION POINT**
- **NON-OBSTRUCTION POINT OF INTEREST**
- **OFZ CONTOUR (MAJOR)**
- **OFZ CONTOUR (MINOR)**
- **EXISTING GROUND AT CENTERLINE**
- **PROFIL VIEW**
- **5:1 TO 6:1 TRANSITION (DISTANCE "Y")**

Notes

Runway 15R-33L
- **Runway 15R (Future)**
- **Runway 33L (Future)**
- **Approach Category**
 - CAT II
 - CAT IIIb
 - Visual
- **Decision Height (FT)**
 - Visual: N/A
 - Visual: N/A
- **Approach Minimums (FT)**
 - Visual: 1,200
 - Visual: 600
 - Visual: 600
- **Visibility Minimums (FT)**
 - Visual: N/A
 - Visual: N/A
 - Visual: 4,000

True North and Magnetic North
- **Magnetic Declination**
 - May 8, 2013
 - Annual Rate of Change: 18.5' W

Source
- NOAA Geophysical Data Center
GENERAL NOTES:

1. All structures and/or obstructions shown on this drawing must be considered as potential hazards whenever aircraft or vehicles are operating over or along the indicated routes of flight, and are shown in accordance with the shape, size and location specified in the most current version of FAA AC 150/5210-5D, "Painting, Marking, and Lighting of Vegetation on an Airport," and in accordance with ANC PART 77 - STANDARDS AND METHODS FOR THE LOCATION AND VISUALIZATION OF OBSTRUCTIONS TO AIR NAVIGATION.

2. The FAA AVIATION SYSTEM STANDARDS (AVN) DIGITAL OBSTACLE FILE (DOF) IS A LISTING OF VERIFIED AND UNVERIFIED OBSTACLES IN THE U.S. OF INTEREST TO AERONAUTICAL INFORMATION USERS. INCLUDED IN THE TABLE ARE THE OBSTACLES THAT PENETRATE ONE OR MORE ANC PART 77 IMAGINARY SURFACES.

3. HORIZONTAL DATUM: (NORTH AMERICAN DATUM OF 1983 (NAD83).)

4. VERTICAL DATUM: (NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).) - ALL ELEVATIONS ARE HEIGHT ABOVE MEAN SEA LEVEL (MSL).

5. THIS DRAWING IS FOR INFORMATIONAL PURPOSES ONLY AND IS NOT TO BE USED FOR LEGAL PURSUITS.

6. SEE SHEET 28 FOR PART 77 OBSTRUCTION TABLE.
<table>
<thead>
<tr>
<th>OBJECT NO.</th>
<th>OBJECT DESCRIPTION</th>
<th>OBJECT TYPE</th>
<th>OBSTRUCTION TYPE</th>
<th>CLEARANCE</th>
<th>OBJECT ELEVATION</th>
<th>ELEVATION SPEC</th>
<th>PROPOSED DISPOSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- The table above is a sample of the obstruction table, which contains detailed information about various objects and their clearance requirements.

- The objects include various types such as fences, poles, and signs, each with specific elevation and clearance details.

- The proposed dispositional actions are indicated in the last column, typically removing or relocating the objects as necessary to meet FAA Part 77 requirements.

- The table is used to ensure that any obstructions are within acceptable limits in accordance with appropriate public laws.

References:

- FAA Part 77 guidelines for airport obstructions.
- Relevant public laws and regulations for obstruction management.

Data Source:

- Official FAA Part 77 obstruction database.
- Local or state transportation authorities.

Assessment:

- The obstruction table is essential for maintaining safe flight operations at airports by ensuring all obstructions are within allowable clearance limits.

- Regular updates to the table are necessary to comply with changing regulations and airport development projects.

Conclusion:

- The obstruction table is a critical tool for airport planners and engineers to manage and control obstructions effectively, ensuring compliance with regulations and safety standards.